

Section A: 40 Marks
 Answer all questions

Question 1

(a) Convert
i. $120 \mathrm{mg} / \mathrm{s}$ to its equivalent in kg / h.
ii. $200 \mathrm{lbm} / \mathrm{s}$ to its equivalent in $\mathrm{kg} / \mathrm{min}$.
iii. Calculate the power of a steam of $100 \mathrm{~kg} / \mathrm{h}$ flow rate and velocity change from $240 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ into kJ / s
[6]
(b) Explain the following:
i. recycle
ii. purge
iii. unit operation
iv. process optimization

Question 2

a) A gas contains 80% propane and 15% butane and the rest is water is available as fuel. Determine:
i. the composition of this gas on wet basis
ii. the composition of this gas on dry basis
iii. mol of $\mathrm{H}_{2} \mathrm{O}$ to moles of dry gas.
b) A kettle used to boil water containing 1.00 L of water at $20^{\circ} \mathrm{C}$ is placed on an electric heater $(\mathrm{Q}=2000 \mathrm{~J})$.
i. Write equation for energy balance for a closed system
ii. (ii) Find the time at which water begins to boil, given that:
$\mathrm{C}_{\mathrm{pw}}=4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, density of water $1000 \mathrm{~g} / \mathrm{L}$.

Question 3

(a) $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{HF}+\mathrm{CaSO}_{4}$

If $600 \mathrm{~mol} / \mathrm{s}$ of CaF_{2} and $900 \mathrm{~mol} / \mathrm{s}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are fed to the factor
(i) What is the limiting reactant?
(ii) Calculate the \% by which the other reactant is in excess.
(iii) Calculate the composition of the exist stream at 80% conversion of the limiting reactant
(b) Show that the following equations are dimensionally consistent:
i. Bernoulli‘s equation $p+h \rho g+\frac{1}{2} \rho v^{2}=\mathrm{k}$
ii. $\quad \mathrm{x}(\mathrm{m})=\mathrm{x}_{0}(\mathrm{~m})+0.308\left(\frac{m}{f t))}\right) v\left(\frac{f t}{s}\right) \mathrm{t}(\mathrm{s})+0.5 \mathrm{a}\left(\frac{m}{\left.s^{2}\right)}\right) \mathrm{t}\left(s^{2}\right)$
(c) (i) What is a flow chart?
(ii) What must be done to obtain maximum benefit from a flow chart?
(d) Define
(i) process
(ii) process stream

Section B

Answer any three questions, each question carries 20 marks

Question 4

a) Briefly explain the following:
i. continuous process ii.batch process
a. steady sate process
iv. make up
b) 100 mol of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ is burnt with 50% excess air. The reactions are given below:
$\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{4} \mathrm{H}_{10}+\frac{9}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$
The conversion of butane is 80% and 25% of butane reacted forms CO and the rest forms CO_{2}.

What is
(i) excess air
(ii) theoretical air
(iii) composition
(iv) selectivity?
c) Determine:

1. The feed rate of air
2. The amount of butane that formed CO
3. The composition of the product stream on wet basis

Question 5

A 300 MW power plant burns coal to water producing saturated steam at 60 bars. This steam is expanded in a turbine to steam at $200^{\circ} \mathrm{C}$ and 1 bar. The steam enters the turbine at $10 \mathrm{~m} / \mathrm{s}$ and exits 5 m below entrance level at $100 \mathrm{~m} / \mathrm{s}$. The turbine is connected to an electrical generator by a shaft. The efficiency of the turbine is 80 \%.
i. Draw and label the flow diagram of the process.
ii. What is the work done by the turbine?
iii. How much heat is lost to the surroundings from the turbine (MW)?
iv. What is the mass flow rate of the steam in the turbine?
ii. Steam $(1500 \mathrm{~kg} / \mathrm{h})$ at 10 bars and $380^{\circ} \mathrm{C}$ is fed to a turbine that operates adiabatically and at steady state. The steam leaves the turbine at 1.0 bar and 150 ${ }^{\circ} \mathrm{C}$ and is cooled in a heat exchanger to a saturated liquid.
i. Draw and label the process. [1]
ii. Calculate the work output the turbine [6](c) The $1000 \mathrm{~kg} / \mathrm{h}$ mineral ore if containing 5% water fed into a double cone. Afterdrying, 90% of the water has been removed. Calculate the final batch compositionand the weight of water removed.[4]
Question 6(a) State and explain the equation for energy balance for a closed system.[2]
(b) Give two uses of energy balance in chemical processes. [2]
(c) List any three energy loss components in a chemical plant. [3]
(d) (i) What is a transient process? [1]
(ii) Give two examples of transient systems. [2]
(iii) Write an equation for material balance for transient system. [3]
(iv) A tank contains 50000 liters of waste (tails) from mineral processing system. The amount of solids present in the tank is 2500 kg . Water is to be added to this tank in order to flush the solids out before discharging the waste into a dam. The water enters the tank at a rate of $3000 \mathrm{~L} / \mathrm{h}$. Find the final concentration of solids in the tank after 5 hours of flushing if the water used for flushing leaves at same rate as entry.

Question 7

a) State any four reasons for recycling in chemical processes
b) Fresh feed stream flowing at $100 \mathrm{~kg} / \mathrm{h}$ contains 20% by weight (K) in $\mathrm{H}_{2} \mathrm{O}(\mathbf{W})$. The fresh feed stream is combined with a recycle stream and is fed to an evaporator. The concentrated liquid solution exited the evaporator contains 50\%

K is fed to a crystallizer. The crystals obtained from the crystallizer are $96 \% \mathbf{K}$ and 4% water. The liquid from the crystallizer constitutes the recycle stream and contains 0.6 kg K per 1.0 kg of $\mathrm{H}_{2} \mathrm{O}$. The flowchart is shown in Fig 1.

Fig. 1

Determine all the stream flow rate values and compositions.
c) A fluid is flowing through a circular pipe at a flow rate of $3.0 \mathrm{~m} / \mathrm{s}$. The density of the fluid is $0.80 \mathrm{~kg} / \mathrm{m}^{3}$. If the inside diameter of the pipe is 0.10 m , what is the flow rate fluid in kg / h ?
d) If 50000 kg of crushed ore containing 3.6% platinum is to be separated in a $5-$ hour period into tails with 0.4% platinum and metal grade with 80% platinum, what are the flow rates of the two output streams from a continuous centrifuge which accomplishes this separation?

