MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES FACULTY OF ENGINEERING

Chemical and Processing Engineering Department

PARTICULATE TECHNOLOGY

CODE: HCHE 325

SESSIONAL EXAMINATIONS
APRIL 2021

DURATION: 3 HOURS

EXAMINER: K. NYENYAYI (MR)

INSTRUCTIONS

- 1. Answer all questions in Section A and any three from Section B.
- 2. Each question carries 20 marks.
- 3. Total marks 100

ADDITIONAL MATERIALS

Calculators.

This question paper consists of 4 printed pages

SECTION A

QUESTION ONE

- **a)** Fully explain the meaning of the following terms as applied to particulate technology:
 - i. Aspect ratio
 - ii. Solidity
 - iii. Circularity
 - iv. Convex hull perimeter [4]
- b) Cubic gold ore particles at a How mine gold processing plant have average length of 2.45 μm. Calculate the average surface equivalent sphere diameter (D_{surface}) of the particles.
- c) State any six applications of dilute phase conveying systems. [6]
- **d)** State the factors that determine the settling velocity of particles during centrifugation. [6]

QUESTION TWO

- a) List five types of impellers which are used in chemical industries for mixing solutions.
- **b)** Draw a fully labelled schematic diagram showing a basic stirred tank. [5]
- c) A packed bed of solid particles of density 2500 kg/m³, occupies a depth of 1 m in a vessel of cross-sectional area 0.04 m². The mass of solids in the bed is 59 kg and the surface-volume mean diameter of the particles is 1 mm. A liquid of density 800 kg/m³ and viscosity 0.002 Pas flows upwards through the bed.
 - i. Calculate the voidage (volume fraction occupied by voids) of the bed.
 - ii. Calculate the pressure drop across the bed when it becomes fluidized.[7]

d) Briefly explain what is meant by <i>incipient fluid</i>	dization point. [3]
SECTION B	
QUESTION THREE	
a) Identify the three basic views that all laser diffi	raction instruments rely on.[3]
Briefly explain wet dispersion and dry dispersi	on approaches to sample
dispersion during particle characterisation.	[6]
b) Outline the criteria that need to be considered of	on deciding characterization
techniques to be applied in analysing solid ores	s from a cement manufacturing
plant.	[7]
c) With aid of diagram describe the freeboard, be	ed and fluidisation vessel
components of a fluidised bed system.	[4]
QUESTION FOUR	
a) Define the terms distribution, eddies and dispe	ersion that are used to describe
mixing mechanisms.	[3]
b) A Rushton turbine used to stir 20 L paint tank a	at 250 rpm using an impeller of
0.5 m diameter. The Reynolds number of the tu	urbine is 11000. If the viscosity of
paint slurry is 4 Pa. s, calculate the mixing time	e and density of the paint if the
stirring speed is 3 s ⁻¹ .	[6]
c) Paint slurry of viscosity 0.05 Pa s and density 2	2000 kg m ⁻³ is agitated in a 20 m ³
baffled tank using a marine propeller 95 cm diameter. Calculate the power	
required for a stirred speed of 0.1 min ⁻¹ . Assume that the Np value for turbulent	
regime is 8.	[6]

[5]

d) In what ways are glass centrifuges different from plastic centrifuges?

QUESTION FIVE

- a) Outline the advantages and disadvantages of using pneumatic conveying systems over mechanical conveying.[8]
- **b)** What are the key differences between dilute phase pneumatic conveying system and dense phase pneumatic conveying? [12]

QUESTION SIX

- a) Identify any four industrial applications of centrifugation. [4]
- **b)** Fully describe the different types of centrifuges based on rotor design and intended use. [6]
- c) Compare circulating fluidised bed scrubber to the wet flue gas desulphurisation.

[10]

THE END