MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

Chemical and Processing Engineering Department

CHEMICAL ENGINEERING THERMODYNAMICS II CODE: HCHE 214

> SESSIONAL EXAMINATIONS APRIL 2021

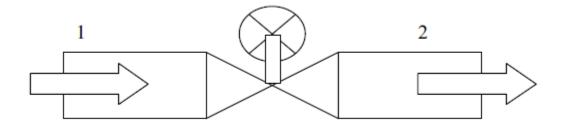
> > **DURATION: 3 HOURS**

EXAMINER: K. NYENYAYI (MR)

Т

INSTRUCTIONS

- 1. Answer any four questions.
- 2. Each question carries 25 marks.
- 3. Total marks 100.


ADDITIONAL MATERIALS

Calculators, Steam tables.

This question paper consists of 5 printed pages

QUESTION ONE

- a) With aid of P V diagrams, define terms *cyclic process, heat engine* and *heat pump*.
 [7]
- **b**) Determine using Steam tables, the volume occupied by 2 kg of steam at 500 kPa, under the following conditions and specify the state of the steam.
 - i. Pure liquid state.
 - ii. When it is a pure vapour state.
 - iii. 20% moisture content.
 - iv. 20% dry
- c) Consider flow of fluid through a small valve as shown;

- i. Describe throttling process.
- ii. Applying Steady Flow Energy Equation (SFEE) below

 $Q - W = (\Delta H + \Delta KE + \Delta PE)$

and making necessary assumptions, show that for the control valve above, the enthalpy of the fluid remains constant.

QUESTION TWO

a) With the aid of a clearly labelled block diagram and P-V or T-S diagrams, describe the process of steam production in chemical industry. Your description

[8]

[3]

[7]

should include the following aspects:

- The ideal Carnot cycle
- Impracticalities of the Carnot cycle
- The ideal Rankine cycle

[20]

b) Calculate efficiency of Carnot cycle for a system with hot reservoir temperature (T_h) of 500 K and cold reservoir temperature (T_c) of 350 K. [5]

QUESTION THREE

- a) A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine at 3000 kPa and 773.15 K and exhausts the turbine at as saturated vapour at 20 kPa.
 - i. What is the steam rate through the turbine?
 - ii. What is the turbine efficiency? [10]
- b) An adiabatic compressor has been designed to continuously compress 1kg/s of saturated vapour steam from 100 kPa to 10 000 kPa and 1100 °C.
 - i. Estimate the power requirement of this compressor in kW.
 - ii. Determine the efficiency of the compressor. [10]
- c) Using examples, distinguish between *internal* and *external combustion engines*.

[5]

QUESTION FOUR

- a) What is Theoretical Flame Temperature (TFT)? [2]
- b) Define the terms Gross Calorific Value (GCV) and Net (lower) Calorific Value (NCV). Give a mathematical relationship between the two. [5]
- c) A medium sized boiler has the following specifications. Determine the boiler efficiency based on the net calorific value of the fuel.

- Steam output 31.6 kgs⁻¹
- Steam pressure 6 MPa
- Steam temperature 500°C
- Boiler Feed Water (BFW) temperature 100°C
- Fuel (Nat. Gas) -96.5 v/v% CH₄, 0.5v/v% C₂H₆, remainder noncombustible
- GCV = $38,700 \text{ kJm}^{-3}$ at 25°C
- Fuel consumption 2.9 m³s⁻¹ Boilerefficiency (η) = $\frac{Energy \ Output \ to \ water}{Energy \ Input \ from \ fuel}$

QUESTION FIVE

a) Describe liquefaction process and outline how the process can be achieved.

[5]

[18]

b) With aid of diagram, outline the Linde Liquefaction process.

[17]

c) Give any 3 industrial applications of liquefaction process.

[3]

Process	Constant Volume	Constant Pressure	Constant Temperature	Polytropic	Reversible Adiabatic or Isentropic
Law	$\frac{P}{T} = \text{const}$	$\frac{V}{T} = \text{const}$	PV = const	PV ⁿ = const	$PV^{Y} = const$
P, V, T, Relation	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$	$P_{1}V_{1}^{n} = P_{2}V_{2}^{n}$ $\frac{P_{1}}{P_{2}} = \left(\frac{V_{2}}{V_{1}}\right)^{n}$ $= \left(\frac{T_{1}}{T_{2}}\right)^{n-1}$	$P_1 V_1^y = P_2 V_2^y$ $\frac{P_1}{P_2} = \left[\frac{V_2}{V_1}\right]^y$ $= \left[\frac{T_1}{T_2}\right]^{\frac{y}{y-1}}$
Change in Internal Energy ΔU	$mC_v(T_2,T_1)$	$mC_v(T_2 - T_1)$	0	$mC_v (T_2 - T_1)$	$mC_v (T_2 - T_1)$
Work Transfer W≔∫ pdv	0	$P(V_2 - V_1)$ Or mR(T_2 - T_1)	$\frac{PV \ln \frac{V_2}{V_1}}{Or}$ or mRT $\ln \frac{V_2}{V_1}$	$\frac{P_1V_1 - P_2V_2}{(n-1)}$ $\frac{mR(T_1 - T_2)}{(n-1)}$	$\frac{\frac{P_{1}V_{1} - P_{2}V_{2}}{(\gamma - 1)}}{\frac{mR(T_{1} - T_{2})}{(\gamma - 1)}}$
Heat Transfer Q	mC _v (T ₁ -T ₂)	mC _p (T ₁ -T ₂	$\frac{PV \ln \frac{V_2}{V_1}}{Or}$ mRT $\ln \frac{V_2}{V_1}$	$W + (U_2 - U_1)$	0
Change in Entropy $\Delta S=S_2-S_1$	$mC_v ln \frac{T_2}{T_1}$ or $mC_v ln \frac{P_2}{P_1}$	$mC_{p}ln\frac{T_{2}}{T_{1}}$ or $mC_{p}ln\frac{V_{2}}{V_{1}}$	mRln $\frac{V_2}{V_1}$ or mRln $\frac{P_1}{P_2}$	$m \left[R \ln \frac{V_2}{V1} + C_v \ln \frac{T_2}{T_1} \right]$ $m \left[R \ln \frac{P_1}{P_2} + C_p \ln \frac{T_2}{T_1} \right]$ $m \left[C_p \ln \frac{V_2}{V_1} + C_v \ln \frac{P_2}{P_1} \right]$	0

Table 1: List of Perfect Gas Relations