MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT OF CHEMICAL AND PROCESSING ENGINEERING

REACTOR DESIGN

CODE: HCHE 324

SESSIONAL EXAMINATIONS

APRIL-MAY 2021

DURATION: 3 HOURS

EXAMINER: MR C.K. SIMENDE

INSTRUCTIONS

- 1. Answer **any 4** questions.
- 2. Each question carries 25 marks.

Question 1

(a) Explain what you understand by the following terms using examples if any:

i.	Rate of reaction	[1 mark]
ii.	Chemical species	[1 mark]
iii.	Identity	[4 marks]
iv.	Decomposition	[4 marks]
v.	Combination	[1 mark]
vi.	Isomerization	[2 marks]

(b) Derive the general mole balance over a boundary, hence shown that:

$$F_{j0} - F_j + \int_0^V r_j dV = \frac{dN_J}{dt}$$

[12 marks]

Question 2

a) The general mole balance (In - Out + Generation = Accumulation) over a boundary can be written symbolically as:

$$F_{j0} - F_j + \int_0^V r_j dV = \frac{dN_J}{dt}$$

Start from this **differential** equation and end up showing that the performance equation for a CSTR is the algebraic equation:

$$V = \frac{F_{j0} - F_j}{-r_j}$$

Of most importance in your answer is to **show exactly how each assumption applies** in the logical progression from the starting equation to this final equation. [9 marks]

- (b) Outline the industrial applications of batch reactors and state its advantages and disadvantages. [8 marks]
- (c) The CSTR volume required is greater than the PFR volume for the same conversion and reaction conditions. Why is this? [8 marks]

Question 3

With the aid of a diagram define the following types of reactors:

i.	Batch reactor	[5 marks]
ii.	CSTR (Continuously Stirred Tank Reactor)	[5 marks]
iii.	Semi-batch reactor	[7 marks]
iv.	PFR (Plug Flow Reactor)	[8 marks]

QUESTION 4

The elementary, liquid-phase, irreversible reaction $A + B \rightarrow C$ is to be carried out in a flow reactor. Two reactors are available, an 800 dm³ PFR that can only be operated at 300 K and a 200 dm³ CSTR that can be operated at 350 K. The two feed streams to the reactor mix to form a single feed stream that is equal molar in A and B, with a total volumetric flow rate of 10 dm³/min. Which of the two reactors will give us the highest conversion? [25 marks] Additional Information: at 300 K, k = 0.07 dm³/mol-min

E = 85000 J/mol-K $C_{A0B} = C_{B0B} = 2 \text{ mol/dm}^3$ $v_{A0} = v_{B0} = 0.5*v_0 = 5 \text{ dm}^3/\text{min}$

QUESTION 5

Species A enters a CSTR at a molar flow rate of 0.4 mol/s. Calculate the volume necessary to achieve 80% conversion in a CSTR. The rate of chemical reaction as a function of the conversion of reactant A given in Table 1.

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
-r _A	0.45	0.37	0.30	0.195	0.113	0.079	0.05

Table 1: Reaction rate as a function of conversion

Hint: Use the direct method and Levenspiel Plot. [25 marks]

END OF PAPER