

FACULTY OF ENGINEERING

Chemical and Processing Engineering Department

CHEMICAL REACTION ENGINEERING I

CODE: HCHE 221
SESSIONAL EXAMINATIONS
APRIL-MAY 2021
DURATION: 3 HOURS

QUESTION ONE

(a) Differentiate elementary and non-elementary reactions.
(b) On doubling the concentration of a reactant, the rate of reaction triples. Find the reaction order.
(c) With the aid of an illustration define fractional conversion, X_{A}
(d) For an irreversible gas phase reaction $3 A \rightarrow 5 R$, determine the value of \mathcal{E}_{A} if the feed is a mixture of $60 \% \mathrm{~A}$ and 40% inert.
(e) Acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ decomposes in a batch reactor operating at $520^{\circ} \mathrm{C}$ and 101 kPa . The reaction stoichiometry is $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$. Under these conditions the reaction is known to be irreversible with a rate constant of $430 \mathrm{~cm}^{3} / \mathrm{mol} \mathrm{sec}$. If $100 \mathrm{~g} / \mathrm{s}$ of acetaldehyde is fed to the reactor, determine the reactor volume necessary to achieve 35% decomposition. [7]
(f) The schematic reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}$ is assumed to consist of two elementary steps:

1. $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}^{*}+\mathrm{B}$ (forward reaction rate $=\mathrm{k}_{1}$; reverse reaction rate $=\mathrm{k}_{-1}$)
2. $A^{*} \rightarrow P$ (forward reaction rate $=k_{2}$). Show that using steady state approximation $\mathrm{d}[\mathrm{P}] / \mathrm{dt}=\left(\mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{~A}][\mathrm{b}]\right) /\left(\mathrm{k}_{-1}[\mathrm{~B}]+\mathrm{k}_{2}\right)$.
(g) For a gas reaction at 400 K , the rate is reported as
$\frac{d p A}{d t}=3.0 \mathrm{p}_{\mathrm{A}}{ }^{2} \mathrm{~atm} / \mathrm{h}$
(i) What are the units of the rate constant?
(ii) What is the value of the rate constant for this reaction if the rate equation is written as:

$$
\begin{equation*}
\mathrm{r}_{\mathrm{A}}=\frac{-1}{V} \frac{d N A}{d t}=\mathrm{k} \mathrm{C}_{\mathrm{A}}^{2}, \mathrm{~mol} / \mathrm{l} . \mathrm{h} \tag{2}
\end{equation*}
$$

QUESTION TWO

(a) (i) Define the term 'specific reaction rate' or 'rate of reaction.
(ii) Given that:

$$
\begin{equation*}
4 A+3 B \rightarrow 10 C \text {, what is the relationship between } r_{A}, r_{B} \text { and } r_{C} ? \tag{3}
\end{equation*}
$$

(b) A 2 liter per minute of liquid containing A and $\mathrm{B}\left(C_{A o}=0.30 \mathrm{~mol} / \mathrm{liter}, C_{B o}=0.05\right.$ $\mathrm{mol} /$ liter) flow into a mixed reactor of volume, $V=1$ liter. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and $\mathrm{C}\left(C_{A f}=0.08 \mathrm{~mol} / / \mathrm{litre}, C_{B f}=0.07 \mathrm{~mol} /\right.$ litre, $\left.C_{C f}=0.03 \mathrm{~mol} / / \mathrm{liter}\right)$. Find the rate of reaction of A, B, and C for the conditions within the reactor.
(c) (i) What is a mixed flow reactor?
(ii) State two advantages of a mixed flow reactor.
(d) A mixed flow reactor is used to determine the kinetics of a reaction whose stoichiometry $A \rightarrow R$. The flow rate of an aqueous solution of $100 \mathrm{~mol} A / L$ to a 1 litre reactor are used and for each run and outlet concentration of A is measured Find the rate equation to represent the following data:

$\mathrm{V}_{\mathrm{o}} / \mathrm{L} / \mathrm{min}$	1	3	12
$\mathrm{C}_{\mathrm{A}} / \mathrm{mol} / \mathrm{L}$	2	10	25

(e) Define ε_{A}
(ii) Which two reactor types performance is identical for constant density systems?

QUESTION THREE

(a) State any three different factors to be considered for reactor design?
(b) With the aid of equations distinguish between holding time and space time
(c) At $76{ }^{\circ} \mathrm{C} \mathrm{NH} 33$ decomposes as follows:
$2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$,
determine the size of PFR operating at $75{ }^{\circ} \mathrm{C}$ and 200 atm needed for 75% conversion of $10 \mathrm{~mol} / \mathrm{h} \mathrm{NH}_{3}$ in a $0.67 \mathrm{NH}_{3}$ and 0.33 inert feed.
(d) A specific enzyme acts as a catalyst in fermentation of reactant A. At a given enzyme concentration in aqueous feed of $20 \mathrm{~L} / \mathrm{min}$, find the volume of the MFR needed for 90% conversion of reactant $\mathrm{A}\left(C_{A o}=2 \mathrm{mo} / \mathrm{L}\right)$. The kinetics of the fermentation reaction at this enzyme concentration is given by:

$$
\begin{equation*}
\mathbf{A} \rightarrow \mathbf{R}, \quad \mathbf{r}_{\mathrm{A}}=\frac{0.1 C_{A}}{1+0.5 C_{A}} \frac{\mathrm{~mol}}{\text { liter.min }} \tag{7}
\end{equation*}
$$

(e) (i) What are multiple reactions?
(ii) State any two classes of such reactions

QUESTION FOUR

(a) State the differences between differential and integral method of analysis of batch reactor data.
(b) At $300{ }^{\circ} \mathrm{C}$ a substance A decomposes as follows:

$$
4 A \rightarrow B+6 C, \quad-r_{A}=10 h^{-1} C_{A}
$$

Find the size of the MFR operating at $700^{\circ} \mathrm{C}$ and 11.4 atm needed for 70% conversion of $10 \mathrm{~mol} / \mathrm{h}$ of A in a $70 \% A$ and 30% inerts feed
(c) The gaseous feed of pure $A(1 \mathrm{~mol} / \mathrm{L})$ enters a mixed flow reactor of volume 4 liters and reacts as follows

$$
2 A \rightarrow R, \quad r_{A}=0.5 C_{A}^{2} \mathrm{~mol} / \mathrm{L} s
$$

(i) What is the order of this reaction?
(ii) Calculate the feed rate in liters/min of the outlet concentration given that $C_{A}=0.5 \mathrm{~mol} / \mathrm{L}$
(d) With the aid of diagram show the different types of semi-batch reactors. [6]

END OF EXAM

$$
\begin{aligned}
& t=N_{A o} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A} V} \\
& t=C_{A O} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A}}=-\int_{C_{A O}}^{C_{A}} \frac{d C_{A}}{-r_{A}} \\
& \tau=N_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right) V_{o}\left(1+\varepsilon_{A} X_{A}\right)}=C_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)\left(1+\varepsilon_{A} X_{A}\right)} \\
& \frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\frac{\Delta X_{A}}{-r_{A}}=\frac{X_{A}}{-r_{A}} \\
& \tau=\frac{\mathbf{1}}{s}=\frac{V}{v_{O}}=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O} X_{A}}{-r_{A}} \\
& \text { or } \\
& \frac{V}{F_{A O}}=\frac{\Delta X_{A}}{\left(-r_{A}\right) f}=\frac{X_{A f-} X_{A i}}{\left(-r_{A}\right) f} \\
& \frac{V}{F_{A O}}=\frac{X_{A}}{-r_{A}}=\frac{C_{A O-} C_{A}}{C_{A O}\left(-r_{A}\right)} \\
& \text { or } \\
& \text { or } \\
& \tau=\frac{V C_{o}}{F_{A O}}=\frac{\boldsymbol{C}_{A O}\left(X_{A f-} X_{A i}\right)}{\left(-r_{A}\right) \boldsymbol{f}} \\
& \tau=\frac{V}{v}=\frac{C_{A o} X_{A}}{-r_{A}}=\frac{C_{A O}-C_{A}}{-r_{A}} \\
& \frac{\boldsymbol{V}}{\boldsymbol{F}_{A O}}=\frac{\boldsymbol{\tau}}{\boldsymbol{C}_{A O}}=\int_{0}^{X_{A f}} \frac{\boldsymbol{d} X_{A}}{-\boldsymbol{r}_{A}} \\
& \frac{V}{F_{A O}}=\frac{V}{C_{A O v o}}=\int_{A I}^{X_{A f}} \frac{d X_{A}}{-r_{A}} \\
& \frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}=-\frac{1}{C_{A O}} \int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}} \\
& \tau=\frac{V}{v_{O}}=C_{A O} \int_{0}^{X_{A I}} \frac{d X_{A}}{-r_{A}}=-\int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}} \\
& X_{A}=1-\frac{C_{A}}{C_{A O}} \text { and } d X_{A}=-\frac{d C_{A}}{C_{A O}}
\end{aligned}
$$

BATCH REACTOR
$t=N_{A O} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A} V}$
$t=C_{A O} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A}}=-\int_{C_{A O}}^{C_{A}} \frac{d C_{A}}{-r_{A}}$
$\tau=N_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right) V_{o}\left(1+\varepsilon_{A} X_{A}\right)}=C_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)\left(1+\varepsilon_{A} X_{A}\right)}$

MIXED FLOW REACTOR

$$
\begin{array}{llr}
\frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\frac{\Delta X_{A}}{-r_{A}}=\frac{X_{A}}{-r_{A}} & \tau=\frac{1}{s}=\frac{V}{v_{O}}=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O} X_{A}}{-r_{A}} \\
\frac{V}{F_{A O}}=\frac{\Delta X_{A}}{\left(-r_{A}\right) f}=\frac{X_{A f-} X_{A i}}{\left(-r_{A}\right) f} & \text { or } & \tau=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O}\left(X_{A f-} X_{A i}\right)}{\left(-r_{A}\right) f} \\
\frac{V}{F_{A O}}=\frac{X_{A}}{-r_{A}}=\frac{C_{A O-} C_{A}}{C_{A O}\left(-r_{A}\right)} & \text { or } & \tau=\frac{V}{v}=\frac{C_{A O} X_{A}}{-r_{A}}=\frac{C_{A O}-C_{A}}{-r_{A}}
\end{array}
$$

PLUG FLOW REACTOR

$\frac{V}{F_{A O}}=\frac{\boldsymbol{\tau}}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}$
$\frac{\boldsymbol{V}}{\boldsymbol{F}_{A O}}=\frac{\boldsymbol{V}}{\boldsymbol{C}_{A O v o}}=\int_{A I}^{X_{A f}} \frac{d X_{A}}{-\boldsymbol{r}_{A}}$
$\frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}=-\frac{1}{C_{A O}} \int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}}$
$\tau=\frac{V}{v_{O}}=C_{A O} \int_{0}^{X_{A I}} \frac{d X_{A}}{-r_{A}}=-\int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}}$
$X_{A}=1-\frac{C_{A}}{C_{A O}}$ and $d X_{A}=-\frac{d C_{A}}{C_{A O}}$

Performance Equations for n th-order Kinetics and $\varepsilon_{A} \neq 0$		
	Plug Flow	Mixed Flow
$\begin{aligned} n & =0 \\ -r_{A} & =k \end{aligned}$	$\frac{k \tau}{c_{n v}}=X_{\lambda}$	$\frac{k \tau}{C_{A l}}=X_{A}$
$\begin{aligned} n & =1 \\ -r_{A} & =k C_{\Lambda} \end{aligned}$	$k T=\left(1+\varepsilon_{A}\right) \mathrm{lm} \frac{1}{1-X_{A}}-\varepsilon_{\lambda} X_{A}$	$k r=\frac{X_{A}\left(1+e_{A} X_{A}\right)}{1-X_{A}}$
$\begin{aligned} n & =2 \\ -r_{A} & =k C_{\lambda}^{2} \end{aligned}$	$k+C_{N 0}=2 \varepsilon_{A}\left(1+\varepsilon_{\lambda}\right) \ln \left(1-X_{\lambda}\right)+\varepsilon_{\lambda}^{\prime} X_{\lambda}+\left(\varepsilon_{\lambda}+1\right)^{2} \cdot \frac{X_{\lambda}}{1-X_{\lambda}}$	$k \tau C_{N}=\frac{X_{A}\left(1+\varepsilon_{A} X_{A}\right)^{2}}{\left(1-X_{N}\right)^{2}}$
$\begin{gathered} \text { any } n \\ -r_{A}=k C_{A}^{\prime} \end{gathered}$		$k+C_{\lambda i}^{-1-1}=\frac{X_{A}\left(1+\varepsilon_{A} X_{N}\right)}{\left(1-X_{\lambda}\right)^{*}}$
$\begin{gathered} n=1 \\ \mathrm{~A} \underset{2}{2} \mathrm{IR} \\ C_{\mathrm{R}=}=0 \end{gathered}$	$\frac{k \tau}{X_{N}}=\left(1+\varepsilon_{A} X_{N}\right) \ln \frac{X_{\lambda}}{X_{N}-X_{A}}-\varepsilon_{A} X_{\lambda}$	$\frac{k_{\tau}}{X_{\lambda}}=\frac{X_{\lambda}\left(1+\varepsilon_{\lambda} X_{\lambda}\right)}{X_{\lambda}-X_{A}}$
General expression	$T=C_{N s} \int_{0}^{x_{i}} \frac{d X_{A}}{-r_{A}}$	$T=\frac{C_{N} X_{A}}{-r_{\lambda}}$

	Plug Flow or Batch	Mixed Flow
$\begin{aligned} n & =0 \\ -r_{\mathrm{A}} & =k \end{aligned}$	$\frac{k \tau}{C_{\mathrm{A} 0}}=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$	$\frac{k \tau}{C_{\mathrm{A} 0}}=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$
$\begin{aligned} n & =1 \\ -r_{\mathrm{A}} & =k C_{\mathrm{A}} \end{aligned}$	$k \tau=\ln \frac{C_{\mathrm{A} 0}}{C_{\mathrm{A}}}=\ln \frac{1}{1-X_{\mathrm{A}}}$	$k \tau=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}}=\frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$
$\begin{aligned} n & =2 \\ -r_{\mathrm{A}} & =k C_{A}^{2} \end{aligned}$	$k \tau C_{A 0}=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}}=\frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$	$k \tau=\frac{\left(C_{\mathrm{A} 0}-C_{\mathrm{A}}\right)}{C_{\mathrm{A}}^{2}}=\frac{X_{\mathrm{A}}}{C_{\mathrm{A} 0}\left(1-X_{\mathrm{A}}\right)^{2}}$
$\begin{gathered} \text { any } n \\ -r_{\mathrm{A}}=k C_{A}^{n} \end{gathered}$	$(n-1) C_{A 0}^{-1} k \tau=\left(\frac{C_{\mathrm{A}}}{C_{\mathrm{A} 0}}\right)^{1-n}-1=\left(1-X_{\mathrm{A}}\right)^{1-n}-1$	$k \tau=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}^{n}}=\frac{X_{\mathrm{A}}}{C_{\mathrm{A} 0}^{n-1}\left(1-X_{\mathrm{A}}\right)^{n}}$
$\begin{gathered} n=1 \\ \mathrm{~A} \underset{2}{\underset{2}{\rightleftarrows}} \mathrm{R} \\ C_{\mathrm{R} 0}=0 \end{gathered}$	$k_{1} \tau=\left(1-\frac{C_{\mathrm{Ac}}}{C_{\mathrm{A} 0}}\right) \ln \left(\frac{C_{\mathrm{A} 0}-C_{\mathrm{A} c}}{C_{\mathrm{A}}-C_{A c}}\right)=X_{\mathrm{Ac}} \ln \left(\frac{X_{\mathrm{Ac}}}{X_{A t}-X_{\mathrm{A}}}\right)$	$k_{1} \tau=\frac{\left(C_{\mathrm{A} 0}-C_{\mathrm{A}}\right)\left(C_{\mathrm{A} 0}-C_{\mathrm{Ac}}\right)}{C_{\mathrm{A} 0}\left(C_{\mathrm{A}}-C_{\mathrm{A} e}\right)}=\frac{X_{\mathrm{A}} X_{\mathrm{Al}}}{X_{\mathrm{Ac}}-X_{\mathrm{A}}}$
General rate	$\tau=\int_{C_{\mathrm{A}}}^{c_{N}} \frac{d C_{\mathrm{A}}}{-r_{\mathrm{A}}}=C_{\mathrm{A} O} \int_{0}^{x_{\mathrm{A}}} \frac{d X_{\mathrm{A}}}{-r_{\mathrm{A}}}$	$\tau=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{-r_{\mathrm{A} f}}=\frac{C_{\mathrm{A} 0} X_{\mathrm{A}}}{-r_{\mathrm{A} f}}$

