MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES FACULTY OF ENGINEERING

Chemical and Processing Engineering Department CHEMICAL ENGINEERING THERMODYNAMICS 1 CODE: HCHE 125

SESSIONAL EXAMINATIONS
APRIL 2021

DURATION: 3 HOURS

EXAMINER: K. NYENYAYI (MR)

INSTRUCTIONS

1. Answer any four questions.
2. Each question carries 25 marks.
3. Total marks 100

ADDITIONAL MATERIALS

Calculators.

This question paper consists of 5 printed pages

QUESTION ONE

a) Define the following terms as used in thermodynamics and provide an example for each:
i. System boundary
ii. Closed system
iii. Adiabatic process
iv. Isothermal process
v. State property
vi. Intensive property
b) Starting with the definition of the first law of thermodynamics, show that for a reversible, adiabatic process involving an ideal gas

$$
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}
$$

NOTE: For an ideal gas: $C_{p}-C_{v}=R, \frac{C_{p}}{C_{v}}=\gamma$

QUESTION TWO

a) Define entropy change, zeroth and second law of thermodynamics
[6]
b) Explain using equations the significance of Gibbs free energy (ΔG).
[6]
c) Calculate the change in enthalpy and the change in entropy when 1 mole of SiC is heated from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. The constant pressure molar heat capacity of

SiC varies with temperature as;

$$
\begin{equation*}
\mathrm{C}_{\mathrm{p}}=50.79+1.97 \times 10^{-3} \mathrm{~T}-4.92 \times 10^{6} \mathrm{~T}^{-2}+8.20 \times 108 \mathrm{~T}^{-3} \mathrm{~J} / \mathrm{mol} . \mathrm{K} \tag{13}
\end{equation*}
$$

QUESTION THREE

a) Air is compressed from an initial condition of 1 bar and $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ to a final state of 5 bar and $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ by two different mechanically reversible process in a closed system.

1. Cooling at constant pressure followed by heating at constant volume.
2. Heating at constant volume followed by cooling at constant pressure. Assuming air to be an ideal gas with the constant heat capacities;

$$
C_{v}=\frac{5}{2} R \quad \text { and } \quad C_{p}=\frac{7}{2} R
$$

i. Calculate the work required, heat transferred, and the changes in internal energy and enthalpy of the air for each process. ($\mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$). Assume at $298,15 \mathrm{~K}$ and 1 bar , the molar volume of air is 0.02479 $\mathrm{m}^{3} / \mathrm{mol}$.
b) Calculate change in internal energy $(\Delta \mathrm{U})$ and change in enthalpy $(\Delta \mathrm{H})$ for 1 kg of water when it is vaporized at the constant temperature of $100{ }^{\circ} \mathrm{C}$ and the constant pressure of $101,33 \mathrm{KPa}$. The specific volumes of liquid and water vapour at these conditions are 0.00104 and $1,673 \mathrm{~m}^{3} / \mathrm{kg}$. For this change, heat in the amount of $2256,9 \mathrm{KJ}$ is added to the water.

QUESTION FOUR

a) Illustrate by means of thermodynamics diagrams or otherwise the definition of terms reversible and irreversible processes.
b) For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, show that the first law, becomes:

$$
\begin{equation*}
d S=C_{p}^{i g} \frac{d T}{T}-\frac{R d P}{P} \quad \text { or } \quad \frac{d S}{R}=\frac{C_{p}^{i g}}{R} \frac{d T}{T}-d \ln P \tag{16}
\end{equation*}
$$

QUESTION FIVE

a) Provide a mathematical statement of the second law of thermodynamics.
b) A 40 kg steel casting $\left(\mathrm{C}_{\mathrm{p}}=0.5 \mathrm{kJkg}^{-1} \mathrm{~K}^{-1}\right)$ at a temperature of $723.15 \mathrm{~K}\left(450^{\circ} \mathrm{C}\right)$ is quenched in 150 kg of oil $\left(\mathrm{C}_{\mathrm{p}}=2.5 \mathrm{kJkg}^{-1} \mathrm{~K}^{-1}\right)$ at $298.15 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$. If there are no heat losses, what is the change in entropy of
i. the casting
ii. the oil
iii. both considered together.

Process	Constant Volume	Constant Pressure	Constant Temperature	Polytropic	Reversible Adiabatic or Isentropic
Law	$\frac{P}{T}=$ const	$\frac{V}{T}=$ const	$\mathrm{PV}=$ const	$\mathrm{PV}^{\mathrm{n}}=$ const	$\mathrm{PV}^{\mathrm{Y}}=$ const
$\mathrm{P}, \mathrm{~V}, \mathrm{~T} .$ Relation	$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	$\begin{aligned} & P_{1} V_{1}^{n}=P_{2} V_{2}^{n} \\ & \frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{n} \\ & =\left(\frac{T_{1}}{T_{2}}\right)^{\frac{n}{n-1}} \end{aligned}$	$\begin{aligned} & P_{1} V_{1}^{y}=P_{2} V_{2}^{y} \\ & \frac{P_{1}}{P_{2}}=\left[\frac{V_{2}}{V_{1}}\right]^{y} \\ & =\left[\frac{T_{1}}{T_{2}}\right]^{\frac{y}{y-1}} \end{aligned}$
Change in Internal Energy ΔU	$\mathrm{mCv}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$	$\mathrm{mC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$	0	$\mathrm{mC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$	$\mathrm{mC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Work Transfer $\mathrm{W}=\int \mathrm{pdv}$	0	$\begin{gathered} \mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\ \mathrm{Or} \\ \mathrm{mR}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \end{gathered}$	$\begin{gathered} \text { PV } \ln \frac{V_{2}}{V_{1}} \\ \text { Or } \\ \text { mRT } \ln \frac{V_{2}}{V_{1}} \end{gathered}$	$\begin{aligned} & \frac{P_{1} V_{1}-P_{2} V_{2}}{(n-1)} \\ & \frac{m R\left(T_{1}-T_{2}\right.}{(n-1)} \end{aligned}$	$\begin{aligned} & \frac{P_{1} V_{1}-P_{2} V_{2}}{(\gamma-1)} \\ & \frac{m R\left(T_{1}-T_{2}\right.}{(\gamma-1)} \\ & \mathrm{mC}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \end{aligned}$
Heat Transfer Q	$\mathrm{mC}_{\mathrm{v}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$	$\mathrm{mC}_{\mathrm{p}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right.$	$\begin{gathered} \mathrm{PV} \ln \frac{V_{2}}{V_{1}} \\ \text { Or } \\ \mathrm{mRT} \ln \frac{V_{2}}{V_{1}} \end{gathered}$	$\mathrm{W}+\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)$	0
Change in Entropy $\Delta \mathrm{S}=\mathrm{S}_{2}-\mathrm{S}_{1}$	$\mathrm{mC}_{\mathrm{v}} \ln \frac{T_{2}}{T_{1}}$ or $\mathrm{mC}_{\mathrm{v}} \ln \frac{P_{2}}{P_{1}}$	$\mathrm{mC}_{\mathrm{p}} \ln \frac{T_{2}}{T_{1}}$ or $\mathrm{mC}_{\mathrm{p}} \ln \frac{V_{2}}{V_{1}}$	$\mathrm{mR} \ln \frac{V_{2}}{V_{1}}$ or $\mathrm{mR} \ln \frac{P_{1}}{P_{2}}$	$\begin{aligned} & m\left[R \ln \frac{V_{2}}{V 1}+C_{v} \ln \frac{T_{2}}{T_{1}}\right] \\ & m\left[R \ln \frac{P_{1}}{P_{2}}+C_{p} \ln \frac{T_{2}}{T_{1}}\right] \\ & m\left[C_{p} \ln \frac{V_{2}}{V_{1}}+C_{v} \ln \frac{P_{2}}{P_{1}}\right] \end{aligned}$	0

Table 1: List of Perfect Gas Relations

