MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

Chemical and Processing Engineering Department

CHEMICAL ENGINEERING THERMODYNAMICS 1 CODE: HCHE 125

> SESSIONAL EXAMINATIONS APRIL 2021

> > **DURATION: 3 HOURS**

EXAMINER: K. NYENYAYI (MR)

INSTRUCTIONS

- 1. Answer any four questions.
- 2. Each question carries 25 marks.
- 3. Total marks 100

ADDITIONAL MATERIALS

Calculators.

This question paper consists of 5 printed pages

QUESTION ONE

- a) Define the following terms as used in thermodynamics and provide an example for each:
 - i. System boundary
 - ii. Closed system
 - iii. Adiabatic process
 - iv. Isothermal process
 - v. State property
 - vi. Intensive property

[9]

b) Starting with the definition of the first law of thermodynamics, show that for a reversible, adiabatic process involving an ideal gas

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$$

NOTE: For an ideal gas:
$$C_p - C_v = R$$
, $\frac{C_p}{C_v} = \gamma$

[16]

QUESTION TWO

a) Define entropy change, zeroth and second law of thermodynamics

[6]

b) Explain using equations the significance of *Gibbs free energy* (ΔG).

[6]

c) Calculate the change in enthalpy and the change in entropy when 1 mole of SiC is heated from 25°C to 1000°C. The constant pressure molar heat capacity of

SiC varies with temperature as;

$$C_p = 50.79 + 1.97 \text{ x } 10^{-3}\text{T} - 4.92 \text{ x } 10^{6}\text{T}^{-2} + 8.20 \text{ x } 108\text{T}^{-3} \text{ J/mol.K}$$
[13]

QUESTION THREE

- a) Air is compressed from an initial condition of 1 bar and 298K (25°C) to a final state of 5bar and 298K (25°C) by two different mechanically reversible process in a closed system.
 - 1. Cooling at constant pressure followed by heating at constant volume.
 - 2. Heating at constant volume followed by cooling at constant pressure. Assuming air to be an ideal gas with the constant heat capacities;

$$C_v = \frac{5}{2}R$$
 and $C_p = \frac{7}{2}R$

i. Calculate the work required, heat transferred, and the changes in internal energy and enthalpy of the air for each process. ($R=8.314 Jmol^{-1}K^{-1}$). Assume at 298,15 K and 1 bar, the molar volume of air is 0.02479 m³/mol.

[16]

b) Calculate change in internal energy (ΔU) and change in enthalpy (ΔH) for 1kg of water when it is vaporized at the constant temperature of 100 °C and the constant pressure of 101,33 KPa. The specific volumes of liquid and water vapour at these conditions are 0.00104 and 1,673 m³/kg. For this change, heat in the amount of 2256,9 KJ is added to the water.

QUESTION FOUR

- a) Illustrate by means of thermodynamics diagrams or otherwise the definition of terms *reversible* and *irreversible* processes.
 - [9]

[9]

b) For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, show that the first law, becomes:

$$dS = C_p^{ig} \frac{dT}{T} - \frac{RdP}{P} \qquad or \qquad \frac{dS}{R} = \frac{C_p^{ig}}{R} \frac{dT}{T} - dlnP$$
[16]

QUESTION FIVE

a) Provide a mathematical statement of the second law of thermodynamics.

[9]

- **b**) A 40 kg steel casting ($C_p = 0.5 \text{ kJkg}^{-1}\text{K}^{-1}$) at a temperature of 723.15 K (450°C) is quenched in 150 kg of oil ($C_p = 2.5 \text{ kJkg}^{-1}\text{K}^{-1}$) at 298.15 K (25°C). If there are no heat losses, what is the change in entropy of
 - i. the casting
 - ii. the oil
 - iii. both considered together.

[14]

Process	Constant Volume	Constant Pressure	Constant Temperature	Polytropic	Reversible Adiabatic or Isentropic
Law	$\frac{P}{T} = \text{const}$	$\frac{V}{T} = \text{const}$	PV = const	$PV^n = const$	$PV^{Y} = const$
P, V, T. Relation	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$P_1V_1 = P_2V_2$	$P_1V_1^n = P_2V_2^n$ $\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^n$ $= \left(\frac{T_1}{T_2}\right)^{\frac{n}{n-1}}$	$\begin{split} P_1 V_1^y &= P_2 V_2^y \\ \frac{P_1}{P_2} &= \left[\frac{V_2}{V_1} \right]^y \\ &= \left[\frac{T_1}{T_2} \right]^{\frac{y}{y-1}} \end{split}$
Change in Internal Energy ∆U	$mC_v(T_2-T_1)$	$mC_v(T_2 - T_1)$	0	$mC_v (T_2 - T_1)$	$mC_v (T_2 - T_1)$
Work Transfer W=∫ pdv	0	$P(V_2 - V_1)$ Or mR(T_2 - T_1)	$PV \ln \frac{V_2}{V_1}$ Or mRT $\ln \frac{V_2}{V_1}$	$\frac{P_{1}V_{1} - P_{2}V_{2}}{(n-1)}$ $\frac{mR(T_{1} - T_{2})}{(n-1)}$	$\frac{P_{1}V_{1} - P_{2}V_{2}}{(\gamma - 1)}$ $\frac{mR(T_{1} - T_{2})}{(\gamma - 1)}$ mC _v (T_{1} - T_{2})
Heat Transfer Q	$mC_v (T_1 - T_2)$	mC _p (T ₁ –T ₂	$PV \ln \frac{V_2}{V_1}$ Or mRT $\ln \frac{V_2}{V_1}$	$W + (U_2 - U_1)$	0
Change in Entropy $\Delta S=S_2-S_1$	$mC_v ln \frac{T_2}{T_1}$ or $mC_v ln \frac{P_2}{P_1}$	$mC_{p}\ln\frac{T_{2}}{T_{1}}$ or $mC_{p}\ln\frac{V_{2}}{V_{1}}$	mRln $\frac{V_2}{V_1}$ or mRln $\frac{P_1}{P_2}$	$m\left[R\ln\frac{V_2}{V1} + C_v \ln\frac{T_2}{T_1}\right]$ $m\left[R\ln\frac{P_1}{P_2} + C_p \ln\frac{T_2}{T_1}\right]$ $m\left[C_p \ln\frac{V_2}{V_1} + C_v \ln\frac{P_2}{P_1}\right]$	0

Table 1: List of Perfect Gas Relations