MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT OF MINING \& MINERAL PROCESSING ENGINEERING DEPARTMENT OF CHEMICAL \& PROCESSING ENGINEERING DEPARTMENT OF METALLURGICAL ENGINEERING

MODULE: ENGINEERING MATHEMATICS III

CODE: HGEN214

SESSIONAL EXAMINATIONS

OCTOBER 2021

DURATION: 3 HOURS

EXAMINER: MR A. ZVAWANDA

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, List of formulae.

SECTION A: (ANSWER ALL OUESTIONS) [40 Marks]

A1. Convert the following
(a). 101.0101_{2} to denary,
(b). $\quad 0.1011_{2}$ to denary,
(c). $\quad 0.59375_{10}$ to binary,
(d). $\quad 58.3125_{10}$ to binary, and
(e). $\quad 5613.90625_{10}$ to binary.

[2, 2, 2, 2, 2]

A2.
(a). State and explain any two sources of errors in numerical computing
(b). Solve the following system of equations using LU decomposition

$$
\begin{gather*}
x+2 y+3 z=12 \\
2 x+3 y+z=8 \\
3 x+y+2 z=10 \tag{5,10}
\end{gather*}
$$

A3.
If $w=0.3721448693$ and $z=0.3720214371$, what is the relative error in the computation of $w-z$ in a minicomputer that has five decimal digits of accuracy?

A4.
Solve the following system of equations using Jacobi Iterative method

$$
\begin{gathered}
5 a+b+c=10 \\
a+6 b-2 c=7 \\
a-3 b+7 c=16
\end{gathered}
$$

SECTION B: (ANSWER ANY THREE (3) QUESTIONS) [60 Marks]

$B 5$.
(a). Convert the following hexadecimal numbers into their binary equivalents
(i). 37_{16},
(ii). ED_{16},
(iii). $9 \mathrm{~F}_{16}$ and
(iv). $\mathrm{A} 21_{16}$.
(b). Convert BD_{16} into a denary number
(c). Use the Simpson Rule with 5 data points to approximate π from the formula

$$
\begin{equation*}
\frac{\pi}{4}=\int_{0}^{1} \frac{d x}{1+x^{2}} \tag{2,2,2,2,3,9}
\end{equation*}
$$

B6.

(a). Use the trapezoidal rule with $n=6$ to approximate the value of

$$
\int_{2}^{7} \frac{d x}{x} .
$$

How does this compare with the exact answer?
(b). Determine the parameters a_{0}, b_{0}, d_{0} and $a_{1}, b_{1}, c_{1}, d_{1}$ so that

$$
S(x)=\left\{\begin{array}{c}
d_{0} x^{3}-3 x^{2}+b_{0} x+a_{0}, \quad-1 \leq x \leq 0 \\
d_{1} \mathrm{x}^{3}-\mathrm{c}_{1} \mathrm{x}^{2} \mathrm{z}+\mathrm{b}_{1} \mathrm{x}+\mathrm{a}_{1}, \quad 0 \leq x \leq 1
\end{array}\right.
$$

Is the natural cubic spline function such that $S(-1)=1, S(0)=2$ and $S(1)=-1$

B7.
(a). Derive the Newton - Raphson method for solving an equation $f(x)=0$
(b). Use the Newton - Raphson Method to find the root of the equation $x^{2}-3 \sin x+2 \operatorname{In}(x+1)-3.5$ correct to 3 significant figures
(c). Use the equation $x^{k}=a$ to derive the Newton-Raphson iteration formula

$$
x_{n+1}=x_{n}-\frac{x_{n-a}^{k}}{k x_{n}^{k-1}}
$$

for finding the $k^{\text {th }}$ root of a
$[5,8,7]$

$B 8$.

(a). Let

$$
f(y)=\frac{y \cos y-y}{y-\sin y} .
$$

Use four - digit rounding arithmetic to evaluate $f(0,1)$.
(b). Carry out the first three iterations of the Gauss-Siedel iteration process to find the solution for the following set of equations

$$
\begin{aligned}
8 a_{1}+2 a_{2}+3 a_{3} & =30 \\
a_{1}-9 a_{2}+2 a_{3} & =1 \\
2 a_{1}+3 a_{2}+6 a_{3} & =31
\end{aligned}
$$

given the initial guess $a_{0}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
[5, 15]

END OF QUESTION PAPER

