MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT OF MINING \& MINERAL PROCESSING ENGINEERING DEPARTMENT OF CHEMICAL \& PROCESSING ENGINEERING

MODULE: ENGINEERING MATHEMATICS V

CODE: HGEN225
SESSIONAL EXAMINATIONS
OCTOBER 2021

DURATION: 3 HOURS

EXAMINER: DR W. GOVERE

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, List of formulae.

SECTION A: [40 MARKS]

Answer all questions in this section

A1.

(a) Prove that if B and C are both inverses of the matrix A, then $B=C$.
(b)Assuming that the sizes of the matrices are such that the indicated operations can be performed prove that
a. $A(B+C)=A B+A C$.
b. $A(B C)=(A B) C$
(c) Prove that

$$
\left|A^{-1}\right|=\frac{1}{\operatorname{det}(A)} .
$$

(d)Prove that if $a d-b c \neq 0$, then the reduced row echelon form of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(e) Use the result in part (d) to prove that if $a d-b c \neq 0$, then the linear system

$$
\begin{aligned}
& a x+b y=k \\
& c x+d y=l,
\end{aligned}
$$

has exactly one solution.
$[3,3,3,3,3,3]$
A2
(a) Find an integrating factor and solve the initial value problem $\left(e^{x+y}+y e^{y}\right) d x+\left(x e^{y}-1\right) d y=0, y(0)=-1$.
(b)Find the general solution of the following differential equations:
i) $y^{\prime}+y \tan x=\sin 2 x$, and
ii) $\quad\left(x^{2}-y^{2}\right) d x+3 x y d y=0$.

A3

(a) Find the values of x and y in the equation $x(1+i)^{2}+y(2-i)^{2}=3+10 i$ given further that $x, y \in \mathbb{R}$.
(b) The cubic equation $z^{3}+A z^{2}+B z+26=0, A, B \in \mathbb{R}$, has one of the roots as $1+i$. Find the real root of the equation and hence determine values for A and B.

SECTION B: [60 MARKS]

Answer any three questions

B4

(a) Prove that if R is the reduced row echelon form of an $n \times n$ matrix A, then either R has a row of zeros or R is the identiry matrix I_{n}.
(b) Use row reduction to show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b)
$$

(c) Solve the following systems of nonlinear equations for x, y and z :

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=6 \\
& x^{2}-y^{2}+2 z^{2}=2 \\
& 2 x^{2}+y^{2}-z^{2}=3
\end{aligned}
$$

(d)Find the value of $a \& b$ for which the following systems of equations

$$
\begin{aligned}
& x-y+2 z=4 \\
& 3 x-2 y+9 z=14 \\
& 2 x-4 y+a z=b
\end{aligned}
$$

have
i. no solution.
ii. unique solution.
iii. infinitely many solutions.
$[4,4,5,3,2,2]$

B5

(a) Prove that if $f(t)$ has the transform $F(s)$ (where $s>k$ for some k), then $e^{a t} f(t)$ has the transform $F(s-a)$ (where $s-a>k$).
(b) The transforms of the first and second derivatives of $f(t)$ satisfy
(1). $\quad \mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)$
(2). $\quad \mathcal{L}\left(f^{\prime \prime}\right)=s^{2} \mathcal{L}(f)-s f(0)-f^{\prime}(0)$
(1) Holds if $f(t)$ is continuous for all $t \geq 0$ and satisfies the growth restriction and $f^{\prime}(t)$ is piecewise continuous on every finite interval on
the semi-axis $t \geq 0$. Similarly, (2) holds if f and f^{\prime} are continuous for all $t \geq 0$ and satisfy the growth restriction and $f^{\prime \prime}$ is piecewise continuous on every finite interval on the semi-axis $t \geq 0$.

Prove the above theorem.
(c) Find the function $f(x)$ such that

$$
\mathcal{L}\{f(x)\}=\frac{s}{(s-2)(s+1)}
$$

(d) Solve the equation

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=\cos 2 x, \\
& \text { given that } y(0)=1 \text { and } y^{\prime}(0)=0 .
\end{aligned}
$$

B6

(a) Water is heated to the boiling point temperature $100^{\circ} \mathrm{C}$. It is then removed from heat and kept in a room which is at constant temperature of $60^{\circ} \mathrm{C}$. After 3 minutes, the temperature of the water is $90^{\circ} \mathrm{C}$.
i. Find the temperature of the water after 6 minutes.
ii. When will the temperature of water be $75^{\circ} \mathrm{C}$ and $61^{\circ} \mathrm{C}$?
(b)Prove that for a $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, any linear combination of two solutions on an open interval I is again a solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on I. In particular prove that, for such an equation, sums and constant multiples of solutions are again solutions.
(c) Solve the IVP:

$$
\cos (x) y^{\prime}+\sin (x) y=2 \cos ^{2}(x) \sin (x)-1
$$

given that

$$
y\left(\frac{\pi}{4}\right)=3 \sqrt{2}, \quad 0 \leq x \leq \frac{\pi}{2}
$$

(d) Given that $y_{1}=e^{x}$ is a solution of $y^{\prime \prime}-y=0$ on the interval $(-\infty, \infty)$, use reduction of order to find a second solution y_{2}.
(e) Using the method of undetermined coefficients find the general solution of $y^{\prime \prime}+4 y^{\prime}-2 y=2 x^{2}-3 x+6$.
$[2,3,3,4,4,4]$

B7

a) Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate of change is the difference between a sinusoidal input of a 24 -hour period from the thyroid gland and a continuous removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its general solution. Find the particular solution satisfying a suitable initial condition.
b) Determine the convergence set for

$$
\sum_{n=0}^{\infty} \frac{2^{-n}}{n+1}(x-1)^{n}
$$

c) Find a power series expansion about $x=0$ for a general solution to the given differential equations:

$$
\begin{array}{ll}
\text { i. } & y^{\prime \prime}+x^{2} y=0 \\
\text { ii. } & \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
\end{array}
$$

(a) Find and classify the singular points of

$$
\left(x^{2}-4\right)^{2} y^{\prime \prime}+3(x-2) y^{\prime}+5 y=0 .
$$

[4, 4, 4, 4, 4]

END OF QUESTION PAPER

