

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: FLUID SOLID SYSTEMS

CODE: CHEP 313

SESSIONAL EXAMINATIONS
JUNE 2023

DURATION: 3 HOURS

EXAMINER: MRS C. MUHEZWA

INSTRUCTIONS

- 1. Answer All questions.
- 2. Start a new question on a fresh page
- 3. Total marks 100

Additional material(s): Graph paper, Calculator

QUESTION 1					
a.	a. Define the term <i>particle characterisation</i> . [
b.	Explain the meaning of the following terms as they are used in particle				
	technology:				
	i.	Surface diameter,			
	ii.	Surface-to-volume diameter,			
	iii.	Martin's diameter,			
	iv.	Feret's diameter.	[4x1]		
c.	c. A solid sample from an industrial plant has cubic particles with average edge				
	leng	th of 3.2 μm. Determine the			
	i.	volume-equivalent sphere diameter (D_{volume})	[3]		
	ii.	surface-equivalent sphere diameter $(D_{surface})$	[3]		
	iii.	volume-surface equivalent sphere diameter (Dsv) of the particles	[2]		
d.	i.	State the forces that act on a particle that is falling in a liquid.	[3]		
	ii.	Hence derive the equation, of the terminal falling velocity of a part	rticle		
	of density ρ_p in a fluid of density ρ_f and viscosity μ . Assume the particle's				
	mo	tion is under gravity, in equilibrium, and is in the Stoke's region.	[7]		
		QUESTION 2			
a.	Expl	ain the following			
	i.	dense phase pneumatic conveying	[3]		
	ii.	saltation velocity	[2]		
	iii.	choking velocity	[2]		
b.	State	e four examples of particulate solids that can be transported by			
	pneu	matic conveying.	[4]		

c. The general relationship between gas velocity and pressure gradient $\Delta P/\Delta L$ for a horizontal transport line is shown in Fig 1. Line AB represents the curve obtained for gas only in the line, CDEF for a solids flux, G_1 , and curve GH for a higher solids feed rate, G_2 .

Fig. 1: Phase diagram for dilute phase horizontal pneumatic transport

- i. Describe and explain what happens if the gas velocity is reduced whilst solids feed rate is kept constant at G1 [8]
- ii. Explain the shape of the graph when G = 0 [3]
- d. What are the advantages of pneumatic conveying over mechanical conveying in particulate technology? [3]

QUESTION 3

a.	Describe the principle behind the <i>elutriation</i> method of particle size				
	meas	surement.	[5]		
b.	. What are the assumptions made in the sedimentation method of particle size				
	meas	surement?	[3]		
c.	Crystalline fertiliser solid particles are immersed in a liquid solvent of viscosity				
	10 Pa s, and density 40 kg/m ³ . The density of the solid particles is 53 kg/m ³				
	and their final settling velocity 5.3 m/s.				
	i.	What is meant by the 'final settling velocity'	[2]		
	ii.	Determine the equivalent Stokes diameter (D _s) of the fertiliser pa	ırticles?		
		Assume Stoke's law apply.	[3]		
d.	Expl	ain the need for particle size reduction in particulate technology	[2]		
e.	State	Rittinger's law of the energy needed for particle size reduction	[2]		
f.	A material is crushed in a Blake jaw crusher such that the average size of				
	particle is reduced from 40 mm to 10 mm with the consumption of energy of				
	13.0 kW/(kg/s). What would be the consumption of energy needed to crush				
	the same material of average size 85 mm to an average size of 15 mm:				
	i.	Assuming Rittinger's law applies?	[3]		
	ii.	Assuming Kick's law applies?	[3]		
g.	. What are the factors that affect the choice of machine selected for a partic				
	grinding operation?				

QUESTION 4

- a. Describe the procedure necessary to choose the right sampling method in powder technology (sampling workflow)[6]
- b. Explain what is meant by *in situ* sampling [2]
- c. What are the advantages of *in situ* sampling? [3]
- d. Describe the principle behind the *coning and quartering* method of sampling
- e. Describe the following methods of particle size enlargement as they are used in particle technology
 - i. Agglomeration [4]
 - ii. Fluidized beds [4]
- f. Differentiate between differential and cumulative particle size distributions

[4]

[2]

END OF EXAMINATIONS