

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

REACTOR ANALYSIS AND DESIGN II/CHEMICAL REACTION ENGINEERING II

CODE: CHEP 224/HCHE 312

SESSIONAL EXAMINATIONS

JUNE 2023

DURATION: 3 HOURS

EXAMINER: DR M. CHIGONDO

INSTRUCTIONS

- 1. Answer all questions
- 2. Each question carries 25 marks
- 3. Total marks 100

QUESTION ONE

- (a) Explain the following in terms of the gas-liquid reactions:
 - i. gas film resistance
 - ii. bulk liquid resistance
 - iii. behaviour in the liquid film
- iv. locating the resistance to reaction. [4]
- (b) i. What is meant by *fluid-fluid reactions*? [2]
 - ii. Give an industrial example of a fluid-fluid reaction. [1]
 - iii. State **three** reasons why such reactions are made to take place? [3]
- (c) Gaseous ammonia (A) is to be absorbed and reacts with nitric acid (B) as follows:

$$A(l \rightarrow g) + B(l) \rightarrow R(l), r_A = kC_A C_B$$
 in a packed column

- i. Determine the behavior in the liquid film (pseudo first-order reaction, instantaneous, second-order reaction, physical transport. [5]
- ii. Describe the following characteristics of the kinetics: location of the major resistance (gas film, liquid film, main body of liquid. [6]
- iii. Calculate the rate of the reaction [2]

Given that:

$$p_A = 100 \text{ Pa}$$
 and $C_B = 100 \text{ mol/m}^3 \text{ liquid}$

$$k = 10^8 \text{ m}^3/\text{mol}^2.\text{h}$$

$$k_{Ag}a = 0.01 \text{ mol/h.m}^2 \text{ of reactor. Pa}$$

$$a = 20 \text{ m}^2/\text{m}^3 \text{ of reactor}$$

$$k_{Al}a = 20 \text{ m}^3 \text{ liquid / (m}^3\text{reactor h)}$$

Page 2 of 9

$$H_A = 1$$
 (Pa m³ liquid)/mol

 $f_l = 0.098 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor}$

$$\mathcal{D}_{Al} = \mathcal{D}_{Bl} = 10^{-6} \text{ m}^2/\text{h}_1$$

(a) What is the role of the Hatta's modulus, M_H in fluid-fluid reactions? [2]

QUESTION TWO

- (b) State any **five** factors to consider in selecting a contactor. [5]
- (c) State the type of contactor for the following situations:
 - i. When M_H is large,

ii. if
$$M_H$$
 is very small [2]

(d) For reactions which occur in the film, the phase distribution coefficient H_A can suggest whether the gas-phase resistance is likely to be important or not.

$$-\frac{1}{S}\frac{dN_{A}}{dt} = \frac{1}{\frac{1}{k_{Ag}} + \frac{H_{A}}{k_{Al}}} \Delta p_{A}$$

$$= \frac{1}{k_{Ag}} + \frac{H_{A}}{k_{Al}} \Delta p_{A}$$

Copy and complete Table 1

Table 1

Gas solubility	H _A small or large	Rate controlling	Type of contacto
		factor	r
Slightly soluble			
gases			
Highly soluble			
gases			

Page 3 of 9

[6]

(e) An engineering process is planned to remove 80 % of reactant present in a gas stream by absorption in water. Find the volume of the tower for a countercurrent absorption operation.

Given the following data:

$$F_g = 9000 \text{ mol/h at } \Pi = 10^5 \text{ Pa}$$

$$P_A = 1000 \text{ Pa}, p_{Aout} = 100 \text{ Pa}$$

 $F_l = 90000 \text{ mpl/h}, k_{Ag}a = 0.36 \text{ mol /hm}^3.\text{Pa}$

$$k_{Al} a = 72/h, C_T = 50000 \text{ mol/h}$$

$$H_A = 2.0 \text{ Pa m}^3/\text{mol}, k = 0 \text{ m}^3/\text{mol h}$$
 [12]

QUESTION THREE

- (a) i. What is roll of enhancement factor in fluid-fluid reactions? [2]
 - ii. What is maximum and minimum value of E? [2]
- (b) Illustrate the shrinking core model in fluid-particle reactions. [8]
- (c) State the **five** successive steps in the *shrinking core model*. [5]
- (d) Spherical solid particles containing B are roasted isothermally in an oven with gas of constant composition. Solids are converted to a firm nonflaking product according to the SCM as follows:

$$A(s) + B(g) \rightarrow R(g) + S(s), C_A = 0.01 \text{ kmol/m}^3, \dot{\rho}_B = 20 \text{ kmol/m}^3$$

From the following conversion data (by chemical analysis) or core size data (by slicing and measuring) determine the rate controlling mechanism for the transformation of solid.

 d_p , mm

 X_{R}

t, min

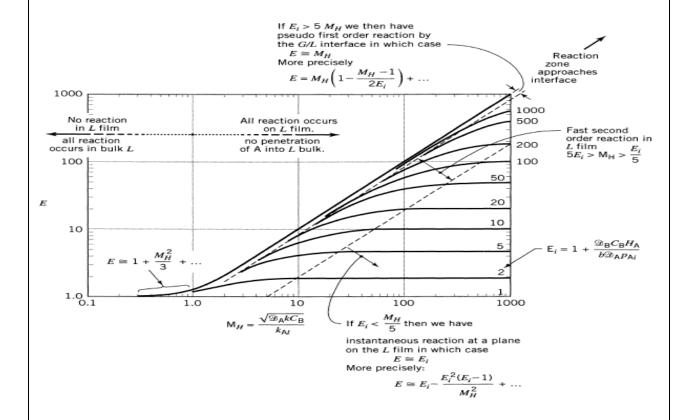
Page 4 of 9

200 1 1 1.5 1 450 [6] (e) State two limitations of the shrinking core model [2] **QUESTION FOUR** (a) State **three** factors controlling the design of a fluid-solid reactor. [3] (b) Give two example of two industrial reactors for solids and gas both in plug flow [2] (c) Explain the following terms i. ash diffusion control, ii. gas diffusion control iii. chemical reaction control [3] (d) The equations (1.1) and (1.2) show how the unreacted core shrinks with time in gas film control systems of solid-fluid reactions. $-\frac{\rho_{\rm B}}{R^2} \int_R^{r_c} r_c^2 dr_c = bk_g C_{\rm Ag} \int_0^t dt$ (1.1) $t = \frac{\rho_{\rm B}R}{3bk_{\rm g}C_{\rm Ag}} \left[1 - \left(\frac{r_c}{R}\right)^3 \right]$ (1.2)Define each symbol these equations. [6] (e) A feed consisting: 25% of 25-pm-radius particles 30% of 50-pm-radius particles Page 5 of 9

25% of 100-pm-radius particles

is to be fed continuously in a thin layer onto a moving grate crosscurrent to a flow of reactant gas. For the planned operating conditions, the time required for complete conversion is 5, 10, and 20 min for the three sizes of particles. Find the conversion of solids on the grate for a residence time of 8 min in the reactor. [5]

(1)	Name t	he t	hree	type	es o	of contacting	ng patterns	in gas	-solid c	peration	on a	nd g	give an
	examp	ole	of su	ich	an	industrial	contactor	which	shows	each	of	the	stated
	contac	cting	gpatte	erns									[6]


END OF EXAMINATION

LIST OF FORMULAE

Fluid-fluid overall reaction equation:

$$-r_{A''''} = \frac{1}{\frac{1}{k_{Ag}a} + \frac{H_{A}}{k_{Al}aE} + \frac{H_{A}}{kC_{B}f_{l}}} p_{A}$$
gas film liquid film liquid bulk resistance resistance resistance

Enhancement factor for fluid-fluid reactions as a function of M_H and E_i :

Fluid-fluid reactor design:

For any two points in an absorber:

Page **7** of **9**

$$p_{A2} - p_{A1} = \frac{F_l \pi}{F_g C_T} (C_{A2} - C_{A1})$$

Volume of a contactor:

$$\begin{split} V_r &= hA_{cs} = \frac{F_g}{\pi} \int_{p_{A1}}^{p_{A2}} \frac{dp_A}{-r_A''''} = \frac{F_l}{C_T} \int_{C_{A1}}^{C_{A2}} \frac{dC_A}{-r_A''''} \\ &= \frac{F_g}{\pi K_{Ag} a} \int_{p_{A1}}^{p_{A2}} \frac{dp_A}{p_A - p_A^*} = \frac{F_l}{C_T K_{Al} a} \int_{C_{A1}}^{C_{A2}} \frac{dC_A}{C_A^* - C_A} \\ &\text{coefficient on gas basis} \quad \text{gas in equilibrium with liquid } \\ \frac{1}{K_{Ag}} = \frac{1}{k_{Ag}} + \frac{H_A}{k_{Al}} \qquad p_A^* = H_A C_A \qquad \frac{1}{K_{Al}} = \frac{1}{H_A k_{Ag}} + \frac{1}{k_{Al}} C_A^* = p_A/H_A \end{split}$$

Fluid-particle reactor design:

Flat plate $X_B = 1 - \frac{1}{L}$ $\frac{t}{\tau} = X_B$ $\frac{t}{\tau} = X_B^2$ $\frac{t}{\tau} = X_B$ $\frac{t}{\tau} = 1 - (1 - X_B)^{1/2}$ $\frac{t}{\tau} = 1$		Conversion-Time Expressions for Various Shapes of Particles, Shrinking-Core Model						
$X_{B} = 1 - \frac{1}{L}$ $L = \text{half thickness}$ $\tau = \frac{\rho_{B}L}{bk_{g}C_{A_{g}}}$ $\tau = \frac{\rho_{B}L^{2}}{2b\mathscr{D}_{e}C_{A_{g}}}$ $\tau = \frac{\rho_{B}L^{2}}{2b\mathscr{D}_{e}C_{A_{g}}}$ $\tau = \frac{\rho_{B}L}{bk''C_{A_{g}}}$ $\tau = \frac{\rho_{B}L}{bk''C_{A_{g}}}$ $\tau = \frac{\rho_{B}L}{bk''C_{A_{g}}}$ $\tau = \frac{\rho_{B}L}{bk''C_{A_{g}}}$ $\tau = \frac{\rho_{B}R}{2bk_{g}C_{A_{g}}}$ $\tau = \frac{\rho_{B}R^{2}}{4b\mathscr{D}_{e}C_{A_{g}}}$ $\tau = \frac{\rho_{B}R}{bk''C_{A_{g}}}$ $\tau = \frac{\rho_{B}R}{bk''C_{A_{g}}}$ $\tau = \frac{\rho_{B}R^{2}}{4b\mathscr{D}_{e}C_{A_{g}}}$ $\tau = \frac{\rho_{B}R^{2}}{4b\mathscr{D}_{e}C_{A_{g}}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathscr{D}_{e}C_{A_{g}}}$ $\tau = \frac{\rho_{B}R^{2}}{bk''C_{A_{g}}}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{A_{g}}}$ Not applicable			Film Diffusion Controls	Ash Diffusion Controls	Reaction Controls			
$T = \frac{\rho_{\rm B}L}{bk_{\rm g}C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}L^2}{2b\mathscr{D}_{\rm g}C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}L}{bk''C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}R}{2bk_{\rm g}C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}R^2}{4b\mathscr{D}_{\rm e}C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}R_0}{bk''C_{\rm Ag}} \qquad \tau = \frac{\rho_{\rm B}R_0}{bk''C$	ticles		$\frac{t}{\tau} = X_{\rm B}$	$\frac{t}{ au} = X_{\mathrm{B}}^2$	$\frac{t}{ au} = X_{\mathrm{B}}$			
Sphere $X_{B} = 1 - \left(\frac{r_{c}}{R}\right)^{3}$ $\tau = \frac{\rho_{B}R}{3bk_{g}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ Large particle $(u = \text{constant})$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ Not applicable $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$		L	$\tau = \frac{\rho_{\rm B} L}{b k_{\rm g} C_{\rm Ag}}$	$\tau = \frac{\rho_{\rm B} L^2}{2b\mathscr{D}_{\rm e} C_{\rm Ag}}$	$\tau = \frac{\rho_{\rm B}L}{bk''C_{\rm Ag}}$			
Sphere $X_{B} = 1 - \left(\frac{r_{c}}{R}\right)^{3}$ $\frac{t}{\tau} = X_{B}$ $\frac{t}{\tau} = 1 - 3(1 - X_{B})^{2/3} + 2(1 - X_{B})$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ $\frac{h}{\tau} = \frac{\rho_{B}R}{3bk_{g}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ Not applicable	size Pa	•	$\frac{t}{ au} = X_{ m B}$	$\frac{t}{\tau} = X_{\rm B} + (1 - X_{\rm B}) \ln(1 - X_{\rm B})$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2}$			
Sphere $X_{B} = 1 - \left(\frac{r_{c}}{R}\right)^{3}$ $\frac{t}{\tau} = X_{B}$ $\frac{t}{\tau} = 1 - 3(1 - X_{B})^{2/3} + 2(1 - X_{B})$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ $\frac{h}{\tau} = \frac{\rho_{B}R}{3bk_{g}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ $\tau = \frac{\rho_{B}R^{2}}{6b\mathcal{D}_{e}C_{Ag}}$ $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ $\frac{t}{\tau} = 1 - (1 - X_{B})^{1/3}$ Not applicable $\tau = \frac{\rho_{B}R_{0}}{bk''C_{Ag}}$ Not applicable	nstant S	$X_{\rm B} = 1 - \left(\frac{r_c}{R}\right)$	$\tau = \frac{\rho_{\rm B}R}{2bk_{\rm g}C_{\rm Ag}}$	$ au = rac{ ho_{ m B}R^2}{4b\mathscr{D}_{\epsilon}C_{ m Ag}}$	$\tau = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$			
Small particle Stokes regime	Ö	•	$\frac{t}{ au} = X_{ m B}$	$\frac{t}{\tau} = 1 - 3(1 - X_{\rm B})^{2/3} + 2(1 - X_{\rm B})$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$			
Stokes regime $ \tau = \frac{\rho_B R_0^2}{2b \mathcal{D} C_{Ag}} $ Not applicable $ \tau = \frac{\rho_B R_0}{b k'' C_{Ag}} $ Large particle $(u = \text{constant})$ $ \frac{t}{\tau} = 1 - (1 - X_B)^{1/2} $ Not applicable		$X_{\rm B} = 1 - \left(\frac{r_{\rm c}}{R}\right)$	$\tau = \frac{\rho_{\rm B}R}{3bk_{\rm g}C_{\rm Ag}}$	$ au = rac{ ho_{ m B}R^2}{6b\mathscr{D}_e C_{ m Ag}}$	$\tau = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$			
$\tau = \frac{\rho_{\rm B}R_0^2}{2b\mathscr{D}C_{\rm Ag}} \qquad \qquad \tau = \frac{\rho_{\rm B}R_0}{bk''C_{\rm Ag}} $ $\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2} \qquad \qquad \frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3} $ Not applicable	Shrinking Sphere	-	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{2/3}$	Not applicable	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$			
			$\tau = \frac{\rho_{\rm B} R_0^2}{2b \mathscr{D} C_{\rm Ag}}$	Not applicable	$\boldsymbol{\tau} = \frac{\rho_{\mathrm{B}} R_0}{b k'' C_{\mathrm{Ag}}}$			
			$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2}$	Not applicable	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$			
- ng			$\tau = (\text{const}) \frac{R_0^{3/2}}{C_{Ag}}$	Not applicable	$\tau = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$			

	Conversion-Time Expressions for Various Shapes of Particles, Shrinking-Core Model						
_		Film Diffusion Controls	Ash Diffusion Controls	Reaction Controls			
	Flat plate $X_{\rm B} = 1 - \frac{1}{I}$	$\frac{t}{\tau} = X_{\rm B}$	$\frac{t}{ au} = X_{\mathrm{B}}^2$	$\frac{t}{ au} = X_{\mathrm{B}}$			
rticles	L = half thickness	$\tau = \frac{\rho_{\rm B} L}{b k_{\rm g} C_{\rm Ag}}$	$\tau = \frac{\rho_{\rm B} L^2}{2b\mathscr{D}_e C_{\rm Ag}}$	$\tau = \frac{\rho_{\rm B}L}{bk''C_{\rm Ag}}$			
Constant Size Particles	Cylinder $(r_c)^2$	$\frac{t}{ au} = X_{\mathrm{B}}$	$\frac{t}{\tau} = X_{\rm B} + (1 - X_{\rm B}) \ln(1 - X_{\rm B})$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2}$			
onstant	$X_{\rm B} = 1 - \left(\frac{r_{\rm c}}{R}\right)^2$	$\tau = \frac{\rho_{\rm B}R}{2bk_{\rm g}C_{\rm Ag}}$	$\tau = \frac{\rho_{\rm B} R^2}{4b \mathscr{D}_e C_{\rm Ag}}$	$\boldsymbol{\tau} = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$			
3	Sphere $(r_c)^3$	$\frac{t}{\tau} = X_{\rm B}$	$\frac{t}{\tau} = 1 - 3(1 - X_{\rm B})^{2/3} + 2(1 - X_{\rm B})$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$			
	$X_{\rm B} = 1 - \left(\frac{r_{\rm c}}{R}\right)^3$	$\tau = \frac{\rho_{\rm B}R}{3bk_{\rm g}C_{\rm Ag}}$	$\boldsymbol{\tau} = \frac{\rho_{\rm B} R^2}{6b \mathscr{D}_e C_{\rm Ag}}$	$\boldsymbol{\tau} = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$			
Shrinking Sphere	Small particle Stokes regime	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{2/3}$	Not applicable	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$			
		$\tau = \frac{\rho_{\rm B} R_0^2}{2b \mathscr{D} C_{\rm Ag}}$	тот аррисаоте	$\boldsymbol{\tau} = \frac{\rho_{\mathrm{B}} R_{\mathrm{0}}}{b k'' C_{\mathrm{Ag}}}$			
	Large particle (u = constant)	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2}$	Not applicable	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$			
S	. ,	$\tau = (\text{const}) \frac{R_0^{3/2}}{C_{\text{Ag}}}$	ног аррисаоте	$\tau = \frac{\rho_{\rm B} R}{b k'' C_{\rm Ag}}$			

Mean conversion of the solids leaving a plug flow reactor:

$$1 - \overline{X}_{B} = \sum_{R(t_{p} = \tau)}^{R_{m}} \left[1 - X_{B}(R_{i}) \right] \frac{F(R_{i})}{F}$$

Chemical reaction controls:

$$[1 - X_{\mathrm{B}}(R_i)] = \left(1 - \frac{t_p}{\tau(R_i)}\right)^3$$