

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS LINEAR MODELS

CODE: ASTA 411

SESSIONAL EXAMINATIONS 2024

DURATION: 3 HOURS

EXAMINER: MR A. CHAKAIPA

INSTRUCTIONS

- 1. Answer All questions in Section A
- 2. Answer any **two** questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, statistical tables

SECTION A: Answer all questions [40 MARKS]

A1

- a) Describe how one performs lacks of fit test to assess model adequacy
- b) Model diagnostics in linear models involve examination of residuals (both graphically and using hypothesis testing techniques).
- i) State any three graphical residual techniques employed, uses and any results expected.
- ii) State any three hypotheses testing techniques, uses and any results expected.

[3, 9, 9]

A2

- a) Define the following terms used in Analysis of Variance of Experimental Designs:
 - i) Single-factor experiment
 - ii) Random -effects experiment
- b) Describe remedial transformation measures to employ to correct for each of the following:
 - i) non-linearity of the regression function
 - ii) Non-constancy of error variance

[2, 2, 2, 3]

A3

- a) In model diagnostic tests transformations are performed on either X or Y variable. State any advantages and or challenges met in trying to perform such transformations.
- b) Explain why the coefficient of determination statistic may be misleading as a measure of model adequacy. [6, 4]

SECTION B: Answer any **two (2)** questions [60 MARKS]

B4

- a) i) State any two situations where general linear models may not be appropriate to apply them.
 - ii) Define the following:
 - 1. Generalized Linear model (GLM);
 - 2. Link function.
 - iii) State any three assumptions of Generalized Linear Models.
- iv) Explain any three advantages of GLMs over traditional ordinary Least Squares Regression (OLS).
- b) Consider a simple logistic regression model output (based on the 2006 Health and Retirement Study [HRS] data) of the probability that a U.S. adult age 50+ has arthritis. The predictors in this main effects only model are gender, education level

[with levels less than high school (<12 years), high school (12 years), and more than high school (>12 years)], and age. The dependent variable is a respondent being diagnosed or not with arthritis. The results are summarized in Table 1.

- i) Assuming a logit binomial model can employed to model the data, write a STATA code to model the data.
- ii) Interpret the output in Table 1 for each of the explanatory variables, including the interaction term.(Hint make use of odds ratios in your interpretation)

[3, 2, 2, 4, 4, 3, 12]

Table 1: Health and Retirement Study (HRS) on Arthritis data

Estimated Logistic Regression Model for Arthritis, Including the First-Order Interaction of Education and Gender

Predictor ^a	Category	$\hat{m{B}}$	$se(\hat{B})$	t	$P(t_{56} > t)$	
INTERCEPT	Constant	-2.728	0.135	-20.22	< 0.01	
GENDER	Male	-0.659	0.061	-10.81	< 0.01	
ED3CAT	<12 yrs	0.454 .	0.063	7.20	< 0.01	
	12 yrs	0.177	0.050	3.56	< 0.01	
AGE	Continuous	0.047	0.002	22.11	< 0.01	
ED3CAT × GENDER	<12 yrs × Male	0.004	0.102	0.04	0.970	
	12 yrs × Male	0.201	0.087	2.20	0.026	

Source: Analysis based on the 2006 HRS data.

B5.

- a) The Error sum of squares is given by the formula $\sum (Y_{ij} \widehat{Y_{ij}})^2 = SSE_R$, the Pure Error sum of squares $\sum (Y_{ij} \overline{Y_j})^2 = SSPE$ and the Lack of Fit sum of squares by $\sum (\overline{Y_j} \widehat{Y_{ij}})^2 = \sum_j n_j (\overline{Y_j} \widehat{Y_{ij}})^2 = SSLF$ Show that $SSE_R = SSLF + SSPE$
- b) A team of investigators at an Agricultural institute are investigating the effect of an amount of the particular chemical in a fertilizer on the amount of yield. They planted on 10 plots and collected the information in Table 2.

Table 2: Effect of amount of fertilizer on amount of yield output

Plot	1	2	3	4	5	6	7	8	9	10
% of chemical	20	10	20	50	50	10	30	40	30	40
yield	130	112	124	168	159	98	134	150	129	136

a Reference categories for categorical predictors are GENDER (female); ED3CAT(>12 vrs).

- i) Construct an Analysis of Variance table and perform a lack of fit test on the data. Clearly show all calculations, hypotheses and conclusions in the answer.
- ii) Calculate the coefficient of determination for the data and comment.

 Compare your results with answer from b (i) [10, 15, 5]

B6

a) In a simple linear regression model, one can estimate the mean response at a value x_0 (a value within the range of X_i 's) by using the model $\widehat{y(x_0)} = \widehat{\beta_0} + \widehat{\beta_1}(x_0)$.

Prove the following:

- i) $E[\widehat{y}(x_0)] = \beta_0 + \beta_1 x_0$ (is an unbiased estimator of the mean response);
- ii) $\operatorname{Var}[\widehat{y}(x_0)] = \frac{\sigma^2}{n} + (x_0 \overline{x})^2 \frac{\sigma^2}{S_{xx}}$.

Hence state the $100(1-\alpha)\%$ confidence interval for the mean response.

b) An investigator is interested in the dependence of the speed of sound on temperature obtained the following results in Table 3.

Table 3: Dependence of speed of sound on temperature

X temperature [°C]	-20	0	20	50	100
Y Speed [m/s]	323	327	340	364	384

Obtain a $100(1-\alpha)\%$ confidence interval for the mean response, $x_0=30$ using the data above. [(4, 8, 2), 16]

END OF QUESTION PAPER