

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY

DEPARTMENT: COMPUTER SCIENCE AND INFORMATION SYSTEMS

MODULE:DATA STRUCTURES AND ALGORITHMS CODE: BCOS122

> SESSIONAL EXAMINATIONS JUNE 2024

> > **DURATION: 3 HOURS**

EXAMINER: Dr C. KURANGA

INSTRUCTIONS

- 1. Answer any four questions
- 2. Each question carries 25 marks
- 3. Start a new question on a fresh page

Additional material(s): None

Page 1 of 3

Ques	ion 1					
a)	Explore the classification of data structures.	[5]				
b)	Discuss the features of ADT.					
c)	Describe ways of implementing a linked list.	[6]				
d)	Explain when a singly linked list can be represented as a circular linked list.	[5]				
Ques	ion 2					
a)	Describe an abstract data type.	[5]				
b)	b) Explore the properties of an algorithm. [5					
c)	Explain:					
	(i) Time complexity; and	[3]				
	(ii) Space complexity;	[3]				
d)	Write a selection sort algorithm and give its time complexities.	[9]				
Ques	ion 3					
a)	Write the routine for the insertion operation of a singly linked list.	[6]				
b)	Explain internal and external sorting.	[6]				
c)	Discuss problems in hashing.	[4]				
d)	Discuss the advantages of a threaded binary tree.	[9]				
Ques	ion 4					
a) Explain why algorithms are analyzed.						
b)	b) Discuss enqueue and dequeue operations.					
c)	With the aid of an algorithm, describe merge sort.	[10]				
Ques	ion 5					
a)	Apply <i>quicksort</i> to sort the list:					
	E, X, A, M, P, L, E					
	in alphabetical order.					
	Draw the tree of the recursive calls made.	[13]				
b)	b) Explain the following traversal techniques:					
	(i) In-order;	[4]				

Page 2 of 3

	(ii)	Pre-order; and		[4]	
	(iii)	Post-order.	[4]		
Qu	estion 6				
a)	The follow	wing algorithm takes as input an array and returns the array with all	the dup	licate	
	elements removed. For example, if the input array is {1, 3, 3, 2, 4, 2}, the algorithm returns				
	$\{1, 3, 2, 4\}.$				
	Write the big-O complexity of this algorithm, if the set is implemented as:				
	i.	An AVL tree.		[4]	
	ii.	A hash table.		[4]	
b)	Explain th	ne roles of data structures.		[4]	
c)	Design an	algorithm that takes two arrays, and returns true if the arrays are disjo	oint, i.e.	have	
	no elemer	nts in common.		[13]	

END OF EXAMINATION